Nuprl Lemma : compose_wf

[A,B,C:Type]. ∀[f:B ⟶ C]. ∀[g:A ⟶ B].  (f g ∈ A ⟶ C)


Proof




Definitions occuring in Statement :  compose: g uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T compose: g
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  isect_memberEquality isectElimination thin functionEquality because_Cache Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[g:A  {}\mrightarrow{}  B].    (f  o  g  \mmember{}  A  {}\mrightarrow{}  C)



Date html generated: 2019_06_20-PM-00_26_15
Last ObjectModification: 2018_09_26-AM-11_49_08

Theory : fun_1


Home Index