Nuprl Lemma : compose_wf
∀[A,B,C:Type]. ∀[f:B ⟶ C]. ∀[g:A ⟶ B].  (f o g ∈ A ⟶ C)
Proof
Definitions occuring in Statement : 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
compose: f o g
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
isect_memberEquality, 
isectElimination, 
thin, 
functionEquality, 
because_Cache, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[g:A  {}\mrightarrow{}  B].    (f  o  g  \mmember{}  A  {}\mrightarrow{}  C)
Date html generated:
2019_06_20-PM-00_26_15
Last ObjectModification:
2018_09_26-AM-11_49_08
Theory : fun_1
Home
Index