Nuprl Lemma : int_formula_prop_and_lemma
∀y,x,f:Top.  (int_formula_prop(f;x "∧" y) ~ int_formula_prop(f;x) ∧ int_formula_prop(f;y))
Proof
Definitions occuring in Statement : 
int_formula_prop: int_formula_prop(f;fmla), 
intformand: left "∧" right, 
top: Top, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
int_formula_prop: int_formula_prop(f;fmla), 
intformand: left "∧" right, 
int_formula_ind: int_formula_ind
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule
Latex:
\mforall{}y,x,f:Top.    (int\_formula\_prop(f;x  "\mwedge{}"  y)  \msim{}  int\_formula\_prop(f;x)  \mwedge{}  int\_formula\_prop(f;y))
 Date html generated: 
2016_05_14-AM-07_07_21
 Last ObjectModification: 
2015_12_26-PM-01_08_51
Theory : omega
Home
Index