Nuprl Lemma : length_wf
∀[A:Type]. ∀[l:A List].  (||l|| ∈ ℤ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
length: ||as||
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
list_ind_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
intEquality, 
natural_numberEquality, 
lambdaEquality, 
addEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    (||l||  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-AM-06_32_48
Last ObjectModification:
2015_12_26-PM-00_37_37
Theory : list_0
Home
Index