Nuprl Lemma : length_wf

[A:Type]. ∀[l:A List].  (||l|| ∈ ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| list: List uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T length: ||as|| so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality natural_numberEquality lambdaEquality addEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    (||l||  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-06_32_48
Last ObjectModification: 2015_12_26-PM-00_37_37

Theory : list_0


Home Index