Nuprl Lemma : list_ind_wf
∀[A,B:Type]. ∀[x:B]. ∀[F:A ⟶ (A List) ⟶ B ⟶ B]. ∀[L:A List].  (rec-case(L) of [] => x | h::t => r.F[h;t;r] ∈ B)
Proof
Definitions occuring in Statement : 
list_ind: list_ind, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
list_ind-general-wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:B].  \mforall{}[F:A  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[L:A  List].
    (rec-case(L)  of
      []  =>  x
      h::t  =>
        r.F[h;t;r]  \mmember{}  B)
Date html generated:
2016_05_14-AM-06_26_46
Last ObjectModification:
2015_12_26-PM-00_41_46
Theory : list_0
Home
Index