Nuprl Lemma : full-omega-unsat

[fmla:int_formula()]. ¬satisfiable_int_formula(fmla) supposing inr Ax  ≤ full-omega(fmla)


Proof




Definitions occuring in Statement :  full-omega: full-omega(fmla) satisfiable_int_formula: satisfiable_int_formula(fmla) int_formula: int_formula() uimplies: supposing a uall: [x:A]. B[x] not: ¬A inr: inr  sqle: s ≤ t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] bool: 𝔹 isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  satisfiable-full-omega-tt satisfiable_int_formula_wf sqle_wf_base int_formula-subtype-base int_formula_wf full-omega_wf set_wf bool_wf equal-wf-T-base not_wf equal_wf true_wf unit_subtype_base false_wf has-value_wf_base is-exception_wf not-bfalse-sqle-btrue
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_isectElimination hypothesis because_Cache independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination baseClosed baseApply closedConclusion applyEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality setElimination rename unionElimination divergentSqle sqleRule sqleReflexivity

Latex:
\mforall{}[fmla:int\_formula()].  \mneg{}satisfiable\_int\_formula(fmla)  supposing  inr  Ax    \mleq{}  full-omega(fmla)



Date html generated: 2017_09_29-PM-05_56_26
Last ObjectModification: 2017_06_01-AM-10_01_56

Theory : omega


Home Index