Nuprl Lemma : full-omega-unsat
∀[fmla:int_formula()]. ¬satisfiable_int_formula(fmla) supposing inr Ax  ≤ full-omega(fmla)
Proof
Definitions occuring in Statement : 
full-omega: full-omega(fmla)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
int_formula: int_formula()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
inr: inr x 
, 
sqle: s ≤ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
satisfiable-full-omega-tt, 
satisfiable_int_formula_wf, 
sqle_wf_base, 
int_formula-subtype-base, 
int_formula_wf, 
full-omega_wf, 
set_wf, 
bool_wf, 
equal-wf-T-base, 
not_wf, 
equal_wf, 
true_wf, 
unit_subtype_base, 
false_wf, 
has-value_wf_base, 
is-exception_wf, 
not-bfalse-sqle-btrue
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
baseClosed, 
baseApply, 
closedConclusion, 
applyEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
setElimination, 
rename, 
unionElimination, 
divergentSqle, 
sqleRule, 
sqleReflexivity
Latex:
\mforall{}[fmla:int\_formula()].  \mneg{}satisfiable\_int\_formula(fmla)  supposing  inr  Ax    \mleq{}  full-omega(fmla)
Date html generated:
2017_09_29-PM-05_56_26
Last ObjectModification:
2017_06_01-AM-10_01_56
Theory : omega
Home
Index