Nuprl Lemma : full-omega_wf

[fmla:int_formula()]. (full-omega(fmla) ∈ {b:𝔹ff  satisfiable_int_formula(fmla))} )


Proof




Definitions occuring in Statement :  full-omega: full-omega(fmla) satisfiable_int_formula: satisfiable_int_formula(fmla) int_formula: int_formula() bfalse: ff bool: 𝔹 uall: [x:A]. B[x] not: ¬A implies:  Q member: t ∈ T set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T full-omega: full-omega(fmla) all: x:A. B[x] implies:  Q uimplies: supposing a polynomial-constraints: polynomial-constraints() so_lambda: λ2x.t[x] so_apply: x[s] iPolynomial: iPolynomial() int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} iMonomial: iMonomial() subtype_rel: A ⊆B istype: istype(T) prop: int_nzero: -o has-value: (a)↓ iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2y.t[x; y] tunion: x:A.B[x] so_apply: x[s1;s2] bool: 𝔹 unit: Unit not: ¬A l_exists: (∃x∈L. P[x]) exists: x:A. B[x] top: Top bor: p ∨bq ifthenelse: if then else fi  bfalse: ff it: btrue: tt uiff: uiff(P;Q) cand: c∧ B false: False or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b true: True pi2: snd(t) int-constraint-problem: IntConstraints l_all: (∀x∈L.P[x]) pi1: fst(t) nat: isr: isr(x)
Lemmas referenced :  satisfiable_int_formula_dnf int_formula_dnf_wf evalall-reduce list_wf polynomial-constraints_wf int_formula_wf list-valueall-type product-valueall-type iPolynomial_wf set-valueall-type iMonomial_wf all_wf int_seg_wf length_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 int_nzero_wf sorted_wf istype-int nequal_wf int-valueall-type value-type-has-value list-value-type satisfiable_int_formula_wf l_exists_wf satisfiable_polynomial_constraints_wf l_member_wf eager-accum-list_accum bool_wf bfalse_wf bor_wf union-valueall-type unit_wf2 equal-valueall-type list_accum_wf list_induction equal-wf-T-base l_all_wf list_accum_nil_lemma istype-void l_all_nil list_accum_cons_lemma l_all_cons eqtt_to_assert btrue_neq_bfalse btrue_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal_wf squash_wf true_wf equal-wf-base-T testxxx_lemma pcs-to-integer-problem_wf omega_wf satisfiable-pcs-to-integer-problem sq_stable__all satisfiable-integer-problem_wf subtype_rel_list list_subtype_base int_subtype_base false_wf sq_stable_from_decidable decidable__false isr-omega not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalRule independent_isectElimination Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality Error :universeIsType,  Error :lambdaEquality_alt,  because_Cache natural_numberEquality setElimination rename productElimination imageMemberEquality baseClosed imageElimination setEquality intEquality callbyvalueReduce Error :productIsType,  Error :functionIsType,  Error :setIsType,  Error :dependent_set_memberEquality_alt,  Error :equalityIsType3,  functionEquality applyEquality Error :isect_memberEquality_alt,  voidElimination Error :equalityIsType4,  functionExtensionality unionElimination equalityElimination independent_pairFormation Error :dependent_pairFormation_alt,  promote_hyp instantiate cumulativity hyp_replacement universeEquality Error :equalityIsType2,  baseApply closedConclusion addEquality

Latex:
\mforall{}[fmla:int\_formula()].  (full-omega(fmla)  \mmember{}  \{b:\mBbbB{}|  b  =  ff  {}\mRightarrow{}  (\mneg{}satisfiable\_int\_formula(fmla))\}  )



Date html generated: 2019_06_20-PM-00_51_40
Last ObjectModification: 2018_10_03-PM-03_00_23

Theory : omega


Home Index