Nuprl Lemma : full-omega_wf
∀[fmla:int_formula()]. (full-omega(fmla) ∈ {b:𝔹| b = ff 
⇒ (¬satisfiable_int_formula(fmla))} )
Proof
Definitions occuring in Statement : 
full-omega: full-omega(fmla)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
int_formula: int_formula()
, 
bfalse: ff
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
full-omega: full-omega(fmla)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
polynomial-constraints: polynomial-constraints()
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iPolynomial: iPolynomial()
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
guard: {T}
, 
iMonomial: iMonomial()
, 
subtype_rel: A ⊆r B
, 
istype: istype(T)
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
has-value: (a)↓
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x y.t[x; y]
, 
tunion: ⋃x:A.B[x]
, 
so_apply: x[s1;s2]
, 
bool: 𝔹
, 
unit: Unit
, 
not: ¬A
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
false: False
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
true: True
, 
pi2: snd(t)
, 
int-constraint-problem: IntConstraints
, 
l_all: (∀x∈L.P[x])
, 
pi1: fst(t)
, 
nat: ℕ
, 
isr: isr(x)
Lemmas referenced : 
satisfiable_int_formula_dnf, 
int_formula_dnf_wf, 
evalall-reduce, 
list_wf, 
polynomial-constraints_wf, 
int_formula_wf, 
list-valueall-type, 
product-valueall-type, 
iPolynomial_wf, 
set-valueall-type, 
iMonomial_wf, 
all_wf, 
int_seg_wf, 
length_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
int_nzero_wf, 
sorted_wf, 
istype-int, 
nequal_wf, 
int-valueall-type, 
value-type-has-value, 
list-value-type, 
satisfiable_int_formula_wf, 
l_exists_wf, 
satisfiable_polynomial_constraints_wf, 
l_member_wf, 
eager-accum-list_accum, 
bool_wf, 
bfalse_wf, 
bor_wf, 
union-valueall-type, 
unit_wf2, 
equal-valueall-type, 
list_accum_wf, 
list_induction, 
equal-wf-T-base, 
l_all_wf, 
list_accum_nil_lemma, 
istype-void, 
l_all_nil, 
list_accum_cons_lemma, 
l_all_cons, 
eqtt_to_assert, 
btrue_neq_bfalse, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal_wf, 
squash_wf, 
true_wf, 
equal-wf-base-T, 
testxxx_lemma, 
pcs-to-integer-problem_wf, 
omega_wf, 
satisfiable-pcs-to-integer-problem, 
sq_stable__all, 
satisfiable-integer-problem_wf, 
subtype_rel_list, 
list_subtype_base, 
int_subtype_base, 
false_wf, 
sq_stable_from_decidable, 
decidable__false, 
isr-omega, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalRule, 
independent_isectElimination, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
setEquality, 
intEquality, 
callbyvalueReduce, 
Error :productIsType, 
Error :functionIsType, 
Error :setIsType, 
Error :dependent_set_memberEquality_alt, 
Error :equalityIsType3, 
functionEquality, 
applyEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIsType4, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
cumulativity, 
hyp_replacement, 
universeEquality, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
addEquality
Latex:
\mforall{}[fmla:int\_formula()].  (full-omega(fmla)  \mmember{}  \{b:\mBbbB{}|  b  =  ff  {}\mRightarrow{}  (\mneg{}satisfiable\_int\_formula(fmla))\}  )
Date html generated:
2019_06_20-PM-00_51_40
Last ObjectModification:
2018_10_03-PM-03_00_23
Theory : omega
Home
Index