Nuprl Lemma : product-valueall-type

[A:Type]. ∀[B:A ⟶ Type].  (valueall-type(A)  (∀a:A. valueall-type(B[a]))  valueall-type(a:A × B[a]))


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q valueall-type: valueall-type(T) uimplies: supposing a sq_stable: SqStable(P) all: x:A. B[x] top: Top has-value: (a)↓ has-valueall: has-valueall(a) so_apply: x[s] prop: squash: T so_lambda: λ2x.t[x] guard: {T}
Lemmas referenced :  sq_stable__has-value evalall-pair valueall-type-has-valueall has-value_wf_base is-exception_wf equal_wf equal-wf-base base_wf all_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality hypothesis independent_functionElimination equalityTransitivity equalitySymmetry because_Cache productElimination isect_memberEquality voidElimination voidEquality callbyvalueReduce independent_isectElimination applyEquality functionExtensionality cumulativity divergentSqle sqleReflexivity dependent_functionElimination imageMemberEquality imageElimination productEquality lambdaEquality axiomSqleEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    (valueall-type(A)  {}\mRightarrow{}  (\mforall{}a:A.  valueall-type(B[a]))  {}\mRightarrow{}  valueall-type(a:A  \mtimes{}  B[a]))



Date html generated: 2017_04_14-AM-07_14_54
Last ObjectModification: 2017_02_27-PM-02_50_35

Theory : call!by!value_1


Home Index