Nuprl Lemma : valueall-type_wf

[T:Type]. (valueall-type(T) ∈ Type)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T valueall-type: valueall-type(T) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  uall_wf has-value_wf_base equal-wf-base isect_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality lemma_by_obid isectElimination thin hypothesisEquality because_Cache lambdaEquality baseApply closedConclusion baseClosed

Latex:
\mforall{}[T:Type].  (valueall-type(T)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_24_20
Last ObjectModification: 2016_01_14-PM-06_45_12

Theory : call!by!value_1


Home Index