Nuprl Lemma : valueall-type_wf
∀[T:Type]. (valueall-type(T) ∈ Type)
Proof
Definitions occuring in Statement : 
valueall-type: valueall-type(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
has-value_wf_base, 
equal-wf-base, 
isect_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[T:Type].  (valueall-type(T)  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_24_20
Last ObjectModification:
2016_01_14-PM-06_45_12
Theory : call!by!value_1
Home
Index