Nuprl Lemma : valueall-type-has-valueall

[T:Type]. ∀[x:T]. has-valueall(x) supposing valueall-type(T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) has-valueall: has-valueall(a) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-valueall: has-valueall(a) has-value: (a)↓ valueall-type: valueall-type(T) prop:
Lemmas referenced :  istype-universe valueall-type_wf sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution axiomSqleEquality hypothesis extract_by_obid isectElimination thin hypothesisEquality Error :isect_memberEquality_alt,  Error :universeIsType,  because_Cache equalityTransitivity equalitySymmetry universeEquality pointwiseFunctionality independent_isectElimination callbyvalueReduce baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  has-valueall(x)  supposing  valueall-type(T)



Date html generated: 2019_06_20-AM-11_20_47
Last ObjectModification: 2018_10_06-AM-09_24_51

Theory : call!by!value_1


Home Index