Nuprl Lemma : all_wf
∀[A:Type]. ∀[B:A ⟶ ℙ].  (∀a:A. B[a] ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
function-wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}a:A.  B[a]  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_06_58
Last ObjectModification:
2016_01_06-PM-05_28_53
Theory : core_2
Home
Index