Nuprl Lemma : all_wf

[A:Type]. ∀[B:A ⟶ ℙ].  (∀a:A. B[a] ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] prop:
Lemmas referenced :  function-wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}a:A.  B[a]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_06_58
Last ObjectModification: 2016_01_06-PM-05_28_53

Theory : core_2


Home Index