Nuprl Lemma : satisfiable_polynomial_constraints_wf

[X:polynomial-constraints()]. (satisfiable_polynomial_constraints(X) ∈ ℙ)


Proof




Definitions occuring in Statement :  satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X) polynomial-constraints: polynomial-constraints() uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf satisfies-poly-constraints_wf polynomial-constraints_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality intEquality lambdaEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:polynomial-constraints()].  (satisfiable\_polynomial\_constraints(X)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_08_00
Last ObjectModification: 2015_12_26-PM-01_08_14

Theory : omega


Home Index