Nuprl Lemma : satisfiable_polynomial_constraints_wf
∀[X:polynomial-constraints()]. (satisfiable_polynomial_constraints(X) ∈ ℙ)
Proof
Definitions occuring in Statement : 
satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X)
, 
polynomial-constraints: polynomial-constraints()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
satisfiable_polynomial_constraints: satisfiable_polynomial_constraints(X)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
satisfies-poly-constraints_wf, 
polynomial-constraints_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:polynomial-constraints()].  (satisfiable\_polynomial\_constraints(X)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_08_00
Last ObjectModification:
2015_12_26-PM-01_08_14
Theory : omega
Home
Index