Nuprl Lemma : satisfies-poly-constraints_wf

[f:ℤ ⟶ ℤ]. ∀[X:polynomial-constraints()].  (satisfies-poly-constraints(f;X) ∈ ℙ)


Proof




Definitions occuring in Statement :  satisfies-poly-constraints: satisfies-poly-constraints(f;X) polynomial-constraints: polynomial-constraints() uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T satisfies-poly-constraints: satisfies-poly-constraints(f;X) polynomial-constraints: polynomial-constraints() prop: and: P ∧ Q so_lambda: λ2x.t[x] all: x:A. B[x] iPolynomial: iPolynomial() so_apply: x[s]
Lemmas referenced :  polynomial-constraints_wf le_wf ipolynomial-term_wf int_term_value_wf equal-wf-T-base l_member_wf iPolynomial_wf l_all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin productEquality lemma_by_obid isectElimination hypothesis hypothesisEquality lambdaEquality lambdaFormation setElimination rename intEquality baseClosed setEquality because_Cache natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality

Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[X:polynomial-constraints()].    (satisfies-poly-constraints(f;X)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_07_56
Last ObjectModification: 2016_01_14-PM-08_41_23

Theory : omega


Home Index