Nuprl Lemma : satisfies-poly-constraints_wf
∀[f:ℤ ⟶ ℤ]. ∀[X:polynomial-constraints()].  (satisfies-poly-constraints(f;X) ∈ ℙ)
Proof
Definitions occuring in Statement : 
satisfies-poly-constraints: satisfies-poly-constraints(f;X)
, 
polynomial-constraints: polynomial-constraints()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
satisfies-poly-constraints: satisfies-poly-constraints(f;X)
, 
polynomial-constraints: polynomial-constraints()
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
iPolynomial: iPolynomial()
, 
so_apply: x[s]
Lemmas referenced : 
polynomial-constraints_wf, 
le_wf, 
ipolynomial-term_wf, 
int_term_value_wf, 
equal-wf-T-base, 
l_member_wf, 
iPolynomial_wf, 
l_all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productEquality, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
intEquality, 
baseClosed, 
setEquality, 
because_Cache, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[X:polynomial-constraints()].    (satisfies-poly-constraints(f;X)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_07_56
Last ObjectModification:
2016_01_14-PM-08_41_23
Theory : omega
Home
Index