Nuprl Lemma : ipolynomial-term_wf

[p:iMonomial() List]. (ipolynomial-term(p) ∈ int_term())


Proof




Definitions occuring in Statement :  ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() int_term: int_term() list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ipolynomial-term: ipolynomial-term(p) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q false: False or: P ∨ Q nil: [] cons: [a b] subtype_rel: A ⊆B iMonomial: iMonomial() so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  null_wf iMonomial_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf list_wf eqtt_to_assert assert_of_null itermConstant_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot list-cases it_wf unit_wf2 nil_wf equal_wf product_subtype_list list_accum_wf int_term_wf subtype_rel_list subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self imonomial-term_wf itermAdd_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination because_Cache productElimination independent_isectElimination natural_numberEquality independent_pairFormation impliesFunctionality voidElimination dependent_functionElimination promote_hyp hypothesis_subsumption productEquality intEquality applyEquality lambdaEquality setEquality setElimination rename independent_pairEquality axiomEquality

Latex:
\mforall{}[p:iMonomial()  List].  (ipolynomial-term(p)  \mmember{}  int\_term())



Date html generated: 2017_04_14-AM-08_58_00
Last ObjectModification: 2017_02_27-PM-03_41_02

Theory : omega


Home Index