Nuprl Lemma : int_nzero_wf
ℤ-o ∈ Type
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
int_nzero: ℤ-o
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nequal: a ≠ b ∈ T 
, 
prop: ℙ
Lemmas referenced : 
nequal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
intEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis
Latex:
\mBbbZ{}\msupminus{}\msupzero{}  \mmember{}  Type
Date html generated:
2019_06_20-AM-11_23_30
Last ObjectModification:
2018_09_28-PM-11_34_31
Theory : arithmetic
Home
Index