Nuprl Lemma : nequal_wf

[A:Type]. ∀[x,y:A].  (x ≠ y ∈ A  ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: nequal: a ≠ b ∈  member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nequal: a ≠ b ∈ 
Lemmas referenced :  not_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType,  because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[x,y:A].    (x  \mneq{}  y  \mmember{}  A    \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_14_34
Last ObjectModification: 2018_09_26-AM-10_41_59

Theory : core_2


Home Index