Nuprl Lemma : nequal_wf
∀[A:Type]. ∀[x,y:A].  (x ≠ y ∈ A  ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nequal: a ≠ b ∈ T 
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
not_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[x,y:A].    (x  \mneq{}  y  \mmember{}  A    \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_14_34
Last ObjectModification:
2018_09_26-AM-10_41_59
Theory : core_2
Home
Index