Nuprl Lemma : eqtt_to_assert
∀[b:𝔹]. uiff(b = tt;↑b)
Proof
Definitions occuring in Statement :
assert: ↑b
,
btrue: tt
,
bool: 𝔹
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
true: True
,
prop: ℙ
,
false: False
,
sq_type: SQType(T)
,
guard: {T}
,
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
Lemmas referenced :
bool_wf,
true_wf,
false_wf,
equal_wf,
equal-wf-T-base,
assert_wf,
subtype_base_sq,
bool_subtype_base,
btrue_wf,
iff_weakening_uiff,
sqequal-wf-base,
sqeqtt_to_assert,
uiff_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairEquality,
isect_memberEquality,
isectElimination,
hypothesisEquality,
extract_by_obid,
hypothesis,
lambdaFormation,
unionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
voidElimination,
dependent_functionElimination,
independent_functionElimination,
baseClosed,
independent_pairFormation,
instantiate,
cumulativity,
independent_isectElimination,
sqequalAxiom,
sqequalIntensionalEquality,
applyEquality,
addLevel,
because_Cache
Latex:
\mforall{}[b:\mBbbB{}]. uiff(b = tt;\muparrow{}b)
Date html generated:
2017_04_14-AM-07_14_15
Last ObjectModification:
2017_02_27-PM-02_50_02
Theory : union
Home
Index