Nuprl Lemma : bool_subtype_base
𝔹 ⊆r Base
Proof
Definitions occuring in Statement :
bool: 𝔹
,
subtype_rel: A ⊆r B
,
base: Base
Definitions unfolded in proof :
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
Lemmas referenced :
union_subtype_base,
unit_wf,
unit_subtype_base
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
because_Cache,
independent_isectElimination
Latex:
\mBbbB{} \msubseteq{}r Base
Date html generated:
2016_05_13-PM-03_20_04
Last ObjectModification:
2015_12_26-AM-09_09_46
Theory : basic_types
Home
Index