Nuprl Lemma : bool_subtype_base
𝔹 ⊆r Base
Proof
Definitions occuring in Statement : 
bool: 𝔹, 
subtype_rel: A ⊆r B, 
base: Base
Definitions unfolded in proof : 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a
Lemmas referenced : 
union_subtype_base, 
unit_wf, 
unit_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
independent_isectElimination
Latex:
\mBbbB{}  \msubseteq{}r  Base
 Date html generated: 
2016_05_13-PM-03_20_04
 Last ObjectModification: 
2015_12_26-AM-09_09_46
Theory : basic_types
Home
Index