Nuprl Lemma : union_subtype_base
∀[A,B:Type].  ((A + B) ⊆r Base) supposing ((B ⊆r Base) and (A ⊆r Base))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
Lemmas referenced : 
istype-universe, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaEquality_alt, 
unionElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
cut, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
Error :unionIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A,B:Type].    ((A  +  B)  \msubseteq{}r  Base)  supposing  ((B  \msubseteq{}r  Base)  and  (A  \msubseteq{}r  Base))
Date html generated:
2019_06_20-AM-11_19_28
Last ObjectModification:
2018_10_06-AM-09_07_21
Theory : subtype_0
Home
Index