Nuprl Lemma : uiff_wf

[P,Q:ℙ].  (uiff(P;Q) ∈ ℙ)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  isect_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[P,Q:\mBbbP{}].    (uiff(P;Q)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_07_16
Last ObjectModification: 2016_01_06-PM-05_28_42

Theory : core_2


Home Index