Nuprl Lemma : sqequal-wf-base
∀[x,y:Base].  (x ~ y ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
base_sq, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalIntensionalEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[x,y:Base].    (x  \msim{}  y  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_19_50
Last ObjectModification:
2015_12_26-AM-09_09_22
Theory : sqequal_1
Home
Index