Nuprl Lemma : subtype_base_sq
∀[A:Type]. SQType(A) supposing A ⊆r Base
Proof
Definitions occuring in Statement : 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
base_sq, 
equal_wf, 
base_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
isectElimination, 
cumulativity, 
lambdaEquality, 
sqequalAxiom, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality
Latex:
\mforall{}[A:Type].  SQType(A)  supposing  A  \msubseteq{}r  Base
Date html generated:
2017_04_14-AM-07_14_10
Last ObjectModification:
2017_02_27-PM-02_49_56
Theory : sqequal_1
Home
Index