Nuprl Lemma : subtype_base_sq

[A:Type]. SQType(A) supposing A ⊆Base


Proof




Definitions occuring in Statement :  sq_type: SQType(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] subtype_rel: A ⊆B implies:  Q prop: guard: {T}
Lemmas referenced :  base_sq equal_wf base_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution lambdaFormation hypothesis dependent_functionElimination thin hypothesisEquality applyEquality sqequalRule independent_functionElimination because_Cache hyp_replacement equalitySymmetry applyLambdaEquality isectElimination cumulativity lambdaEquality sqequalAxiom isect_memberEquality equalityTransitivity universeEquality

Latex:
\mforall{}[A:Type].  SQType(A)  supposing  A  \msubseteq{}r  Base



Date html generated: 2017_04_14-AM-07_14_10
Last ObjectModification: 2017_02_27-PM-02_49_56

Theory : sqequal_1


Home Index