Nuprl Lemma : iff_weakening_uiff

[P,Q:ℙ].  (uiff(P;Q)  (P ⇐⇒ Q))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  uiff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation independent_isectElimination hypothesis hypothesisEquality cut introduction extract_by_obid isectElimination Error :inhabitedIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    (uiff(P;Q)  {}\mRightarrow{}  (P  \mLeftarrow{}{}\mRightarrow{}  Q))



Date html generated: 2019_06_20-AM-11_14_02
Last ObjectModification: 2018_09_26-AM-10_41_47

Theory : core_2


Home Index