Nuprl Lemma : iff_transitivity
∀[P,Q,R:ℙ].  ((P 
⇐⇒ Q) 
⇒ (Q 
⇐⇒ R) 
⇒ (P 
⇐⇒ R))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P,Q,R:\mBbbP{}].    ((P  \mLeftarrow{}{}\mRightarrow{}  Q)  {}\mRightarrow{}  (Q  \mLeftarrow{}{}\mRightarrow{}  R)  {}\mRightarrow{}  (P  \mLeftarrow{}{}\mRightarrow{}  R))
Date html generated:
2019_06_20-AM-11_16_41
Last ObjectModification:
2018_09_26-AM-10_24_20
Theory : core_2
Home
Index