Nuprl Lemma : iff_wf
∀[A,B:ℙ].  (A 
⇐⇒ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rev_implies_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
functionEquality, 
sqequalHypSubstitution, 
cumulativity, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
universeEquality, 
Error :universeIsType
Latex:
\mforall{}[A,B:\mBbbP{}].    (A  \mLeftarrow{}{}\mRightarrow{}  B  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_14_32
Last ObjectModification:
2018_09_26-AM-10_41_58
Theory : core_2
Home
Index