Nuprl Lemma : iff_wf

[A,B:ℙ].  (A ⇐⇒ B ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q prop: and: P ∧ Q implies:  Q rev_implies:  Q
Lemmas referenced :  rev_implies_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality functionEquality sqequalHypSubstitution cumulativity hypothesisEquality extract_by_obid isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality universeEquality Error :universeIsType

Latex:
\mforall{}[A,B:\mBbbP{}].    (A  \mLeftarrow{}{}\mRightarrow{}  B  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_14_32
Last ObjectModification: 2018_09_26-AM-10_41_58

Theory : core_2


Home Index