Nuprl Lemma : rev_implies_wf
∀[A,B:ℙ].  (A 
⇐ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
isectElimination, 
thin, 
universeEquality, 
Error :universeIsType
Latex:
\mforall{}[A,B:\mBbbP{}].    (A  \mLeftarrow{}{}  B  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_14_30
Last ObjectModification:
2018_09_26-AM-10_41_56
Theory : core_2
Home
Index