Nuprl Lemma : subtype_rel_self

[A:Type]. (A ⊆A)


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality hypothesisEquality sqequalRule axiomEquality hypothesis universeEquality

Latex:
\mforall{}[A:Type].  (A  \msubseteq{}r  A)



Date html generated: 2016_05_13-PM-03_19_15
Last ObjectModification: 2015_12_26-AM-09_08_03

Theory : subtype_0


Home Index