Nuprl Lemma : subtype_rel_self
∀[A:Type]. (A ⊆r A)
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
hypothesis, 
universeEquality
Latex:
\mforall{}[A:Type].  (A  \msubseteq{}r  A)
Date html generated:
2016_05_13-PM-03_19_15
Last ObjectModification:
2015_12_26-AM-09_08_03
Theory : subtype_0
Home
Index