Nuprl Lemma : assert_of_null
∀[T:Type]. ∀[as:T List].  uiff(↑null(as);as = [] ∈ (T List))
Proof
Definitions occuring in Statement : 
null: null(as)
, 
nil: []
, 
list: T List
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
false: False
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
Lemmas referenced : 
list-cases, 
null_nil_lemma, 
nil_wf, 
product_subtype_list, 
null_cons_lemma, 
assert_wf, 
null_wf, 
and_wf, 
equal_wf, 
list_wf, 
btrue_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
axiomEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
independent_pairEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].    uiff(\muparrow{}null(as);as  =  [])
Date html generated:
2016_05_14-AM-06_30_34
Last ObjectModification:
2015_12_26-PM-00_39_08
Theory : list_0
Home
Index