Nuprl Lemma : assert_of_null

[T:Type]. ∀[as:T List].  uiff(↑null(as);as [] ∈ (T List))


Proof




Definitions occuring in Statement :  null: null(as) nil: [] list: List assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] top: Top bfalse: ff false: False prop: sq_type: SQType(T) implies:  Q guard: {T} true: True
Lemmas referenced :  list-cases null_nil_lemma nil_wf product_subtype_list null_cons_lemma assert_wf null_wf and_wf equal_wf list_wf btrue_wf subtype_base_sq bool_wf bool_subtype_base assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation axiomEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename setEquality instantiate cumulativity independent_isectElimination independent_functionElimination natural_numberEquality independent_pairEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].    uiff(\muparrow{}null(as);as  =  [])



Date html generated: 2016_05_14-AM-06_30_34
Last ObjectModification: 2015_12_26-PM-00_39_08

Theory : list_0


Home Index