Nuprl Lemma : assert_witness
∀[b:𝔹]. ((↑b) 
⇒ (Ax ∈ ↑b))
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
axiom: Ax
Definitions unfolded in proof : 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
true: True
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
ifthenelse_wf, 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
axiomEquality, 
natural_numberEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
universeEquality, 
lambdaEquality
Latex:
\mforall{}[b:\mBbbB{}].  ((\muparrow{}b)  {}\mRightarrow{}  (Ax  \mmember{}  \muparrow{}b))
Date html generated:
2019_06_20-AM-11_30_56
Last ObjectModification:
2018_08_01-AM-10_18_53
Theory : bool_1
Home
Index