Nuprl Lemma : ifthenelse_wf
∀[b:𝔹]. ∀[A:Type]. ∀[p,q:A].  (if b then p else q fi  ∈ A)
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
unit_wf, 
equal_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
unionEquality, 
extract_by_obid, 
lambdaFormation, 
unionElimination, 
isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
Error :inhabitedIsType, 
isect_memberEquality, 
Error :universeIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[A:Type].  \mforall{}[p,q:A].    (if  b  then  p  else  q  fi    \mmember{}  A)
Date html generated:
2019_06_20-AM-11_19_54
Last ObjectModification:
2018_09_26-AM-10_50_26
Theory : union
Home
Index