Nuprl Lemma : bool_cases_sqequal
∀b:𝔹. ((b ~ tt) ∨ (b ~ ff))
Proof
Definitions occuring in Statement : 
bfalse: ff
, 
btrue: tt
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
member: t ∈ T
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
cut, 
lemma_by_obid, 
hypothesis, 
inlFormation, 
sqequalIntensionalEquality, 
sqequalRule, 
inrFormation
Latex:
\mforall{}b:\mBbbB{}.  ((b  \msim{}  tt)  \mvee{}  (b  \msim{}  ff))
Date html generated:
2016_05_13-PM-03_20_05
Last ObjectModification:
2015_12_26-AM-09_09_47
Theory : basic_types
Home
Index