Nuprl Lemma : bool_cases_sqequal

b:𝔹((b tt) ∨ (b ff))


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt bool: 𝔹 all: x:A. B[x] or: P ∨ Q sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] bool: 𝔹 unit: Unit member: t ∈ T it: btrue: tt bfalse: ff or: P ∨ Q guard: {T}
Lemmas referenced :  bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin equalityElimination cut lemma_by_obid hypothesis inlFormation sqequalIntensionalEquality sqequalRule inrFormation

Latex:
\mforall{}b:\mBbbB{}.  ((b  \msim{}  tt)  \mvee{}  (b  \msim{}  ff))



Date html generated: 2016_05_13-PM-03_20_05
Last ObjectModification: 2015_12_26-AM-09_09_47

Theory : basic_types


Home Index