Nuprl Lemma : list-cases
∀[T:Type]. ∀x:T List. ((x ~ []) ∨ (x ∈ T × (T List)))
Proof
Definitions occuring in Statement : 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
list: T List
, 
or: P ∨ Q
, 
it: ⋅
, 
nil: []
, 
top: Top
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
nat: ℕ
, 
and: P ∧ Q
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
colength: colength(L)
Lemmas referenced : 
list_wf, 
istype-universe, 
colist-cases, 
istype-void, 
istype-top, 
top_wf, 
colist_wf, 
subtype_rel_product, 
pair-eta, 
colength_wf, 
int-value-type, 
istype-int, 
le_wf, 
set-value-type, 
nat_wf, 
has-value_wf-partial, 
value-type-has-value, 
int_subtype_base, 
set_subtype_base, 
subtype_partial_sqtype_base, 
pair-sq-axiom-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
universeEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
because_Cache, 
baseClosed, 
Error :productIsType, 
Error :equalityIsType4, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
voidElimination, 
Error :isect_memberEquality_alt, 
independent_isectElimination, 
cumulativity, 
Error :lambdaEquality_alt, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
applyLambdaEquality, 
independent_pairEquality, 
natural_numberEquality, 
intEquality, 
Error :dependent_set_memberEquality_alt, 
callbyvalueAdd, 
independent_functionElimination, 
Error :inhabitedIsType, 
Error :equalityIsType1
Latex:
\mforall{}[T:Type].  \mforall{}x:T  List.  ((x  \msim{}  [])  \mvee{}  (x  \mmember{}  T  \mtimes{}  (T  List)))
Date html generated:
2019_06_20-PM-00_38_36
Last ObjectModification:
2018_10_18-PM-01_28_03
Theory : list_0
Home
Index