Nuprl Lemma : list-cases

[T:Type]. ∀x:T List. ((x []) ∨ (x ∈ T × (T List)))


Proof




Definitions occuring in Statement :  nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q member: t ∈ T product: x:A × B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T list: List or: P ∨ Q it: nil: [] top: Top uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) prop: nat: and: P ∧ Q has-value: (a)↓ implies:  Q colength: colength(L)
Lemmas referenced :  list_wf istype-universe colist-cases istype-void istype-top top_wf colist_wf subtype_rel_product pair-eta colength_wf int-value-type istype-int le_wf set-value-type nat_wf has-value_wf-partial value-type-has-value int_subtype_base set_subtype_base subtype_partial_sqtype_base pair-sq-axiom-wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate universeEquality setElimination rename dependent_functionElimination unionElimination sqequalRule because_Cache baseClosed Error :productIsType,  Error :equalityIsType4,  Error :inlFormation_alt,  Error :inrFormation_alt,  voidElimination Error :isect_memberEquality_alt,  independent_isectElimination cumulativity Error :lambdaEquality_alt,  applyEquality equalitySymmetry equalityTransitivity productElimination applyLambdaEquality independent_pairEquality natural_numberEquality intEquality Error :dependent_set_memberEquality_alt,  callbyvalueAdd independent_functionElimination Error :inhabitedIsType,  Error :equalityIsType1

Latex:
\mforall{}[T:Type].  \mforall{}x:T  List.  ((x  \msim{}  [])  \mvee{}  (x  \mmember{}  T  \mtimes{}  (T  List)))



Date html generated: 2019_06_20-PM-00_38_36
Last ObjectModification: 2018_10_18-PM-01_28_03

Theory : list_0


Home Index