Nuprl Lemma : set_subtype_base
∀[A:Type]. ∀[P:A ⟶ ℙ].  {a:A| P[a]}  ⊆r Base supposing A ⊆r Base
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_transitivity, 
base_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
setEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
universeEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    \{a:A|  P[a]\}    \msubseteq{}r  Base  supposing  A  \msubseteq{}r  Base
Date html generated:
2016_05_13-PM-03_19_28
Last ObjectModification:
2015_12_26-AM-09_07_38
Theory : subtype_0
Home
Index