Nuprl Lemma : set_subtype_base

[A:Type]. ∀[P:A ⟶ ℙ].  {a:A| P[a]}  ⊆Base supposing A ⊆Base


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  subtype_rel_transitivity base_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaEquality setElimination thin rename hypothesisEquality setEquality applyEquality hypothesis sqequalRule universeEquality lemma_by_obid isectElimination because_Cache independent_isectElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    \{a:A|  P[a]\}    \msubseteq{}r  Base  supposing  A  \msubseteq{}r  Base



Date html generated: 2016_05_13-PM-03_19_28
Last ObjectModification: 2015_12_26-AM-09_07_38

Theory : subtype_0


Home Index