Nuprl Lemma : pair-eta
∀[p:Top × Top]. (p ~ <fst(p), snd(p)>)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productElimination, 
thin, 
sqequalRule, 
sqequalAxiom, 
hypothesis, 
productEquality, 
lemma_by_obid
Latex:
\mforall{}[p:Top  \mtimes{}  Top].  (p  \msim{}  <fst(p),  snd(p)>)
Date html generated:
2016_05_13-PM-03_19_55
Last ObjectModification:
2015_12_26-AM-09_09_20
Theory : sqequal_1
Home
Index