Nuprl Lemma : subtype_partial_sqtype_base
∀T:Type. ((T ⊆r Base)
⇒ (partial(T) ⊆r Base))
Proof
Definitions occuring in Statement :
partial: partial(T)
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
base: Base
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
Lemmas referenced :
subtype_rel_partial,
base_wf,
partial-base,
subtype_rel_transitivity,
partial_wf,
subtype_rel_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_isectElimination,
because_Cache,
universeEquality
Latex:
\mforall{}T:Type. ((T \msubseteq{}r Base) {}\mRightarrow{} (partial(T) \msubseteq{}r Base))
Date html generated:
2016_05_14-AM-06_09_39
Last ObjectModification:
2015_12_26-AM-11_52_15
Theory : partial_1
Home
Index