Nuprl Lemma : subtype_partial_sqtype_base

T:Type. ((T ⊆Base)  (partial(T) ⊆Base))


Proof




Definitions occuring in Statement :  partial: partial(T) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  subtype_rel_partial base_wf partial-base subtype_rel_transitivity partial_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache universeEquality

Latex:
\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (partial(T)  \msubseteq{}r  Base))



Date html generated: 2016_05_14-AM-06_09_39
Last ObjectModification: 2015_12_26-AM-11_52_15

Theory : partial_1


Home Index