Nuprl Lemma : subtype_partial_sqtype_base
∀T:Type. ((T ⊆r Base) 
⇒ (partial(T) ⊆r Base))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_rel_partial, 
base_wf, 
partial-base, 
subtype_rel_transitivity, 
partial_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}T:Type.  ((T  \msubseteq{}r  Base)  {}\mRightarrow{}  (partial(T)  \msubseteq{}r  Base))
Date html generated:
2016_05_14-AM-06_09_39
Last ObjectModification:
2015_12_26-AM-11_52_15
Theory : partial_1
Home
Index