Nuprl Lemma : subtype_rel_partial
∀[A,B:Type].  partial(A) ⊆r partial(B) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
partial: partial(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
base-partial: base-partial(T)
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
per-partial: per-partial(T;x;y)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
partial_wf, 
quotient-member-eq, 
base-partial_wf, 
per-partial_wf, 
per-partial-equiv_rel, 
subtype_rel_sets, 
base_wf, 
has-value_wf_base, 
equal-wf-base, 
not_wf, 
is-exception_wf, 
subtype_rel_wf, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
productEquality, 
isectEquality, 
setEquality, 
lambdaFormation, 
independent_pairFormation, 
axiomEquality, 
independent_functionElimination, 
cumulativity, 
isect_memberEquality, 
universeEquality, 
promote_hyp
Latex:
\mforall{}[A,B:Type].    partial(A)  \msubseteq{}r  partial(B)  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_14-AM-06_09_33
Last ObjectModification:
2015_12_26-AM-11_52_28
Theory : partial_1
Home
Index