Nuprl Lemma : subtype_rel_partial

[A,B:Type].  partial(A) ⊆partial(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  partial: partial(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B partial: partial(T) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] base-partial: base-partial(T) so_apply: x[s1;s2] all: x:A. B[x] guard: {T} so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q cand: c∧ B per-partial: per-partial(T;x;y) uiff: uiff(P;Q)
Lemmas referenced :  partial_wf quotient-member-eq base-partial_wf per-partial_wf per-partial-equiv_rel subtype_rel_sets base_wf has-value_wf_base equal-wf-base not_wf is-exception_wf subtype_rel_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution pointwiseFunctionalityForEquality lemma_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination setElimination rename independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry applyEquality because_Cache productEquality isectEquality setEquality lambdaFormation independent_pairFormation axiomEquality independent_functionElimination cumulativity isect_memberEquality universeEquality promote_hyp

Latex:
\mforall{}[A,B:Type].    partial(A)  \msubseteq{}r  partial(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_14-AM-06_09_33
Last ObjectModification: 2015_12_26-AM-11_52_28

Theory : partial_1


Home Index