Nuprl Lemma : quotient-member-eq

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (E[x;y]  (x y ∈ (x,y:T//E[x;y]))) supposing EquivRel(T;x,y.E[x;y])


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q so_apply: x[s1;s2] subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] quotient: x,y:A//B[x; y] and: P ∧ Q cand: c∧ B squash: T guard: {T} true: True equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  subtype_rel_self equiv_rel_wf istype-universe quotient_wf equal_wf squash_wf true_wf subtype_quotient equal_functionality_wrt_subtype_rel2 equal-wf-base-T subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  hypothesis Error :universeIsType,  applyEquality hypothesisEquality thin sqequalRule instantiate extract_by_obid sqequalHypSubstitution isectElimination universeEquality Error :inhabitedIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  because_Cache pointwiseFunctionality pertypeMemberEquality equalityTransitivity equalitySymmetry independent_isectElimination independent_pairFormation imageElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :equalityIsType3,  applyLambdaEquality setElimination rename productElimination Error :equalityIsType1,  hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (E[x;y]  {}\mRightarrow{}  (x  =  y))  supposing  EquivRel(T;x,y.E[x;y])



Date html generated: 2019_06_20-PM-00_32_07
Last ObjectModification: 2018_11_24-AM-09_34_59

Theory : quot_1


Home Index