Nuprl Lemma : subtype_rel_sets
∀[A,B:Type]. ∀[P:A ⟶ ℙ]. ∀[Q:B ⟶ ℙ].  ({a:A| P[a]}  ⊆r {b:B| Q[b]} ) supposing ((∀a:A. (P[a] 
⇒ Q[a])) and ({a:A| P[a]\000C}  ⊆r B))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
subtype_rel_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
thin, 
because_Cache, 
sqequalHypSubstitution, 
sqequalRule, 
isect_memberFormation, 
introduction, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
lambdaEquality, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:B  {}\mrightarrow{}  \mBbbP{}].
    (\{a:A|  P[a]\}    \msubseteq{}r  \{b:B|  Q[b]\}  )  supposing  ((\mforall{}a:A.  (P[a]  {}\mRightarrow{}  Q[a]))  and  (\{a:A|  P[a]\}    \msubseteq{}r  B))
Date html generated:
2016_05_13-PM-03_18_47
Last ObjectModification:
2015_12_26-AM-09_08_29
Theory : subtype_0
Home
Index