Nuprl Lemma : per-partial-equiv_rel

[T:Type]. EquivRel(base-partial(T);x,y.per-partial(T;x;y))


Proof




Definitions occuring in Statement :  per-partial: per-partial(T;x;y) base-partial: base-partial(T) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q per-partial: per-partial(T;x;y) uiff: uiff(P;Q) uimplies: supposing a has-value: (a)↓ prop: base-partial: base-partial(T) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  per-partial-reflex base-partial_wf has-value_wf_base per-partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination sqequalRule axiomSqleEquality setElimination rename equalitySymmetry because_Cache equalityTransitivity independent_pairEquality lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  EquivRel(base-partial(T);x,y.per-partial(T;x;y))



Date html generated: 2016_05_14-AM-06_09_22
Last ObjectModification: 2015_12_26-AM-11_52_29

Theory : partial_1


Home Index