Nuprl Lemma : per-partial-reflex

[T:Type]. ∀[x:base-partial(T)].  per-partial(T;x;x)


Proof




Definitions occuring in Statement :  per-partial: per-partial(T;x;y) base-partial: base-partial(T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T base-partial: base-partial(T) per-partial: per-partial(T;x;y) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a has-value: (a)↓ prop:
Lemmas referenced :  has-value_wf_base base-partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename independent_pairFormation hypothesis sqequalRule axiomSqleEquality lemma_by_obid isectElimination hypothesisEquality because_Cache productElimination independent_isectElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:base-partial(T)].    per-partial(T;x;x)



Date html generated: 2016_05_14-AM-06_09_21
Last ObjectModification: 2015_12_26-AM-11_52_26

Theory : partial_1


Home Index