Nuprl Lemma : per-partial-reflex
∀[T:Type]. ∀[x:base-partial(T)].  per-partial(T;x;x)
Proof
Definitions occuring in Statement : 
per-partial: per-partial(T;x;y)
, 
base-partial: base-partial(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base-partial: base-partial(T)
, 
per-partial: per-partial(T;x;y)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
has-value_wf_base, 
base-partial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
axiomSqleEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_isectElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:base-partial(T)].    per-partial(T;x;x)
Date html generated:
2016_05_14-AM-06_09_21
Last ObjectModification:
2015_12_26-AM-11_52_26
Theory : partial_1
Home
Index