Nuprl Lemma : base-partial_wf
∀[T:Type]. (base-partial(T) ∈ Type)
Proof
Definitions occuring in Statement :
base-partial: base-partial(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
base-partial: base-partial(T)
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
and: P ∧ Q
Lemmas referenced :
base_wf,
and_wf,
isect_wf,
has-value_wf_base,
equal-wf-base,
not_wf,
is-exception_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality,
setEquality,
lemma_by_obid,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
because_Cache
Latex:
\mforall{}[T:Type]. (base-partial(T) \mmember{} Type)
Date html generated:
2016_05_14-AM-06_09_19
Last ObjectModification:
2015_12_26-AM-11_52_28
Theory : partial_1
Home
Index