Nuprl Lemma : base-partial_wf

[T:Type]. (base-partial(T) ∈ Type)


Proof




Definitions occuring in Statement :  base-partial: base-partial(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T base-partial: base-partial(T) uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q
Lemmas referenced :  base_wf and_wf isect_wf has-value_wf_base equal-wf-base not_wf is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality setEquality lemma_by_obid isectElimination thin hypothesisEquality lambdaEquality because_Cache

Latex:
\mforall{}[T:Type].  (base-partial(T)  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_09_19
Last ObjectModification: 2015_12_26-AM-11_52_28

Theory : partial_1


Home Index