Nuprl Lemma : base-partial_wf
∀[T:Type]. (base-partial(T) ∈ Type)
Proof
Definitions occuring in Statement : 
base-partial: base-partial(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base-partial: base-partial(T)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
Lemmas referenced : 
base_wf, 
and_wf, 
isect_wf, 
has-value_wf_base, 
equal-wf-base, 
not_wf, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
setEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  (base-partial(T)  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_09_19
Last ObjectModification:
2015_12_26-AM-11_52_28
Theory : partial_1
Home
Index