Nuprl Lemma : partial-base
partial(Base) ⊆r Base
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
subtype_rel: A ⊆r B
, 
base: Base
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
partial: partial(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
base-partial: base-partial(T)
, 
prop: ℙ
, 
per-partial: per-partial(T;x;y)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
not: ¬A
, 
false: False
Lemmas referenced : 
base_wf, 
per-partial_wf, 
base-partial_wf, 
partial_wf, 
subtype_base_sq, 
subtype_rel_self, 
has-value_wf_base, 
is-exception_wf, 
base-partial-not-exception
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
rename, 
Error :universeIsType, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
setElimination, 
Error :equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
Error :productIsType, 
Error :equalityIsType4, 
because_Cache, 
sqequalSqle, 
divergentSqle, 
independent_isectElimination, 
instantiate, 
cumulativity, 
sqleReflexivity, 
voidElimination
Latex:
partial(Base)  \msubseteq{}r  Base
Date html generated:
2019_06_20-PM-00_33_49
Last ObjectModification:
2018_10_27-AM-11_07_53
Theory : partial_1
Home
Index