Nuprl Lemma : base-partial-not-exception

[T:Type]. ∀[x:base-partial(T)].  is-exception(x))


Proof




Definitions occuring in Statement :  base-partial: base-partial(T) is-exception: is-exception(t) uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False base-partial: base-partial(T) and: P ∧ Q prop:
Lemmas referenced :  is-exception_wf base-partial_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution setElimination rename productElimination hypothesis independent_functionElimination voidElimination lemma_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:base-partial(T)].    (\mneg{}is-exception(x))



Date html generated: 2016_05_14-AM-06_09_20
Last ObjectModification: 2015_12_26-AM-11_52_27

Theory : partial_1


Home Index