Nuprl Lemma : value-type-has-value

[T:Type]. ∀[x:T]. (x)↓ supposing value-type(T)


Proof




Definitions occuring in Statement :  value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  has-value: (a)↓ uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] value-type: value-type(T) prop:
Lemmas referenced :  sqle_wf_base value-type_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity lemma_by_obid because_Cache thin isectElimination isect_memberEquality hypothesisEquality hypothesis axiomSqleEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution pointwiseFunctionality independent_isectElimination callbyvalueReduce extract_by_obid baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  (x)\mdownarrow{}  supposing  value-type(T)



Date html generated: 2019_06_20-AM-11_20_45
Last ObjectModification: 2018_10_15-PM-05_10_28

Theory : call!by!value_1


Home Index