Nuprl Lemma : value-type-has-value
∀[T:Type]. ∀[x:T]. (x)↓ supposing value-type(T)
Proof
Definitions occuring in Statement : 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
has-value: (a)↓
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
value-type: value-type(T)
, 
prop: ℙ
Lemmas referenced : 
sqle_wf_base, 
value-type_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
lemma_by_obid, 
because_Cache, 
thin, 
isectElimination, 
isect_memberEquality, 
hypothesisEquality, 
hypothesis, 
axiomSqleEquality, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
pointwiseFunctionality, 
independent_isectElimination, 
callbyvalueReduce, 
extract_by_obid, 
baseClosed
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  (x)\mdownarrow{}  supposing  value-type(T)
Date html generated:
2019_06_20-AM-11_20_45
Last ObjectModification:
2018_10_15-PM-05_10_28
Theory : call!by!value_1
Home
Index