Nuprl Lemma : nil_wf
∀[T:Type]. ([] ∈ T List)
Proof
Definitions occuring in Statement : 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list: T List
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
nil: []
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
colength: colength(L)
, 
has-value: (a)↓
, 
it: ⋅
Lemmas referenced : 
is-exception_wf, 
has-value_wf_base, 
colist_wf, 
unit_wf2, 
ifthenelse_wf, 
it_wf, 
btrue_wf, 
colist-ext, 
colength_wf, 
int-value-type, 
le_wf, 
set-value-type, 
nat_wf, 
has-value_wf-partial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
imageMemberEquality, 
dependent_pairEquality, 
instantiate, 
productEquality, 
baseClosed, 
applyEquality, 
divergentSqle, 
sqleReflexivity
Latex:
\mforall{}[T:Type].  ([]  \mmember{}  T  List)
Date html generated:
2016_05_14-AM-06_25_44
Last ObjectModification:
2016_01_14-PM-08_26_47
Theory : list_0
Home
Index