Nuprl Lemma : nil_wf

[T:Type]. ([] ∈ List)


Proof




Definitions occuring in Statement :  nil: [] list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list: List uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: nil: [] ext-eq: A ≡ B and: P ∧ Q b-union: A ⋃ B tunion: x:A.B[x] ifthenelse: if then else fi  btrue: tt pi2: snd(t) subtype_rel: A ⊆B colength: colength(L) has-value: (a)↓ it:
Lemmas referenced :  is-exception_wf has-value_wf_base colist_wf unit_wf2 ifthenelse_wf it_wf btrue_wf colist-ext colength_wf int-value-type le_wf set-value-type nat_wf has-value_wf-partial
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry universeEquality productElimination imageMemberEquality dependent_pairEquality instantiate productEquality baseClosed applyEquality divergentSqle sqleReflexivity

Latex:
\mforall{}[T:Type].  ([]  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_25_44
Last ObjectModification: 2016_01_14-PM-08_26_47

Theory : list_0


Home Index