Nuprl Lemma : assert_of_bnot

[p:𝔹]. uiff(↑¬bp;¬↑p)


Proof




Definitions occuring in Statement :  bnot: ¬bb assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb ifthenelse: if then else fi  assert: b bfalse: ff prop: true: True all: x:A. B[x]
Lemmas referenced :  false_wf true_wf assert_wf bnot_wf not_wf bool_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution unionElimination equalityElimination sqequalRule voidElimination extract_by_obid hypothesis independent_functionElimination isectElimination hypothesisEquality lambdaEquality dependent_functionElimination because_Cache Error :universeIsType,  natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry productElimination independent_pairEquality isect_memberEquality

Latex:
\mforall{}[p:\mBbbB{}].  uiff(\muparrow{}\mneg{}\msubb{}p;\mneg{}\muparrow{}p)



Date html generated: 2019_06_20-AM-11_20_07
Last ObjectModification: 2018_09_26-AM-10_50_30

Theory : union


Home Index