Nuprl Lemma : bnot_wf

[b:𝔹]. bb ∈ 𝔹)


Proof




Definitions occuring in Statement :  bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  bfalse_wf btrue_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule extract_by_obid hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType

Latex:
\mforall{}[b:\mBbbB{}].  (\mneg{}\msubb{}b  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-AM-11_19_56
Last ObjectModification: 2018_09_26-AM-10_50_27

Theory : union


Home Index