Nuprl Lemma : int_term_value_wf

[f:ℤ ⟶ ℤ]. ∀[t:int_term()].  (int_term_value(f;t) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_term_value: int_term_value(f;t) int_term: int_term() uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_term_value: int_term_value(f;t) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  int_term_ind_wf_simple int_term_wf subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesisEquality lambdaEquality applyEquality addEquality hypothesis multiplyEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality

Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[t:int\_term()].    (int\_term\_value(f;t)  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-06_59_23
Last ObjectModification: 2015_12_26-PM-01_13_02

Theory : omega


Home Index