Nuprl Lemma : int_term_value_wf
∀[f:ℤ ⟶ ℤ]. ∀[t:int_term()].  (int_term_value(f;t) ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_term_value: int_term_value(f;t)
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_term_value: int_term_value(f;t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
int_term_ind_wf_simple, 
int_term_wf, 
subtract_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
addEquality, 
hypothesis, 
multiplyEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality
Latex:
\mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[t:int\_term()].    (int\_term\_value(f;t)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-AM-06_59_23
Last ObjectModification:
2015_12_26-PM-01_13_02
Theory : omega
Home
Index