Nuprl Lemma : int_term_ind_wf_simple

[A:Type]. ∀[v:int_term()]. ∀[Constant,Var:var:ℤ ⟶ A]. ∀[Add,Subtract,Multiply:left:int_term()
                                                                                ⟶ right:int_term()
                                                                                ⟶ A
                                                                                ⟶ A
                                                                                ⟶ A].
[Minus:num:int_term() ⟶ A ⟶ A].
  (int_term_ind(v;
                itermConstant(const) Constant[const];
                itermVar(var) Var[var];
                itermAdd(left,right) rec1,rec2.Add[left;right;rec1;rec2];
                itermSubtract(left,right) rec3,rec4.Subtract[left;right;rec3;rec4];
                itermMultiply(left,right) rec5,rec6.Multiply[left;right;rec5;rec6];
                itermMinus(num) rec7.Minus[num;rec7])  ∈ A)


Proof




Definitions occuring in Statement :  int_term_ind: int_term_ind int_term: int_term() uall: [x:A]. B[x] so_apply: x[s1;s2;s3;s4] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B true: True prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  int_term_ind_wf true_wf int_term_wf subtype_rel_dep_function istype-int istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  Error :universeIsType,  functionExtensionality applyEquality Error :dependent_set_memberEquality_alt,  natural_numberEquality Error :inhabitedIsType,  equalityTransitivity equalitySymmetry closedConclusion intEquality functionEquality because_Cache setEquality independent_isectElimination Error :lambdaFormation_alt,  Error :setIsType,  setElimination rename applyLambdaEquality Error :functionIsType,  instantiate universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[v:int\_term()].  \mforall{}[Constant,Var:var:\mBbbZ{}  {}\mrightarrow{}  A].  \mforall{}[Add,Subtract,Multiply:left:int\_term()
                                                                                                                                                                {}\mrightarrow{}  right:int\_term()
                                                                                                                                                                {}\mrightarrow{}  A
                                                                                                                                                                {}\mrightarrow{}  A
                                                                                                                                                                {}\mrightarrow{}  A].
\mforall{}[Minus:num:int\_term()  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (int\_term\_ind(v;
                                itermConstant(const){}\mRightarrow{}  Constant[const];
                                itermVar(var){}\mRightarrow{}  Var[var];
                                itermAdd(left,right){}\mRightarrow{}  rec1,rec2.Add[left;right;rec1;rec2];
                                itermSubtract(left,right){}\mRightarrow{}  rec3,rec4.Subtract[left;right;rec3;rec4];
                                itermMultiply(left,right){}\mRightarrow{}  rec5,rec6.Multiply[left;right;rec5;rec6];
                                itermMinus(num){}\mRightarrow{}  rec7.Minus[num;rec7])    \mmember{}  A)



Date html generated: 2019_06_20-PM-00_45_05
Last ObjectModification: 2019_01_22-AM-08_39_20

Theory : omega


Home Index