Nuprl Lemma : l_member_wf

[T:Type]. ∀[x:T]. ∀[l:T List].  ((x ∈ l) ∈ ℙ)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_member: (x ∈ l) so_lambda: λ2x.t[x] prop: cand: c∧ B nat: uimplies: supposing a sq_stable: SqStable(P) implies:  Q squash: T so_apply: x[s]
Lemmas referenced :  exists_wf nat_wf less_than_wf length_wf equal_wf select_wf sq_stable__le list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality setElimination rename because_Cache cumulativity hypothesisEquality independent_isectElimination natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[l:T  List].    ((x  \mmember{}  l)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_14-AM-08_36_49
Last ObjectModification: 2017_02_27-PM-03_28_46

Theory : list_0


Home Index