Nuprl Lemma : sq_stable__le
∀[i,j:ℤ].  SqStable(i ≤ j)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
le: A ≤ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
sq_stable__and, 
not_wf, 
less_than'_wf, 
and_wf, 
member_wf, 
sq_stable__not, 
sq_stable__equal, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
intEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
voidElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].    SqStable(i  \mleq{}  j)
Date html generated:
2016_05_13-PM-03_39_28
Last ObjectModification:
2015_12_26-AM-09_41_04
Theory : arithmetic
Home
Index