Nuprl Lemma : sq_stable__le

[i,j:ℤ].  SqStable(i ≤ j)


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] le: A ≤ B int:
Definitions unfolded in proof :  le: A ≤ B uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q not: ¬A false: False
Lemmas referenced :  sq_stable__and not_wf less_than'_wf and_wf member_wf sq_stable__not sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality intEquality independent_functionElimination lambdaFormation because_Cache lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality voidElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].    SqStable(i  \mleq{}  j)



Date html generated: 2016_05_13-PM-03_39_28
Last ObjectModification: 2015_12_26-AM-09_41_04

Theory : arithmetic


Home Index